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1
Introduction

This monograph deals with the generalized Riemann problem (GRP) of math-
ematical fluid dynamics and its application to computational fluid dynamics. It
shows how the solution to this problem serves as a basic tool in the construction
of a robust numerical scheme that can be successfully implemented in a wide
variety of fluid dynamical topics. The flows covered by this exposition may be
quite different in nature, yet they share some common features; they all belong
to the class of compressible, inviscid, time-dependent flows. Fluid dynamical
phenomena of this type often contain a number of smooth flow regions sepa-
rated by singularities such as shock fronts, detonation waves, interfaces, and
centered rarefaction waves. One must then address various computational is-
sues related to this class of fluid dynamical problems, notably the “capturing”
of discontinuities such as shock fronts, detonation waves, or interfaces; reso-
lution of centered rarefaction waves where flow gradients are unbounded; and
evaluation of flow variables in irregular computational cells at the intersection
of a moving boundary surface with an underlying mesh.

From the mathematical point of view, the various systems of equations gov-
erning compressible, inviscid, time-dependent flow phenomena may all be char-
acterized as systems of “(nonlinear) hyperbolic conservation laws.”

Hyperbolic conservation laws (in one space variable) are systems of time-
dependent partial differential equations. The most common problem associated
with such systems is the initial value problem (henceforth IVP), which is the
following: Given the values of the unknown functions at time t = 0 (as functions
of the space variable x ∈ R), use the equations to determine the evolution in
time of those functions. When the unknown functions are defined over the whole
real line R, one often refers to the IVP as the “Cauchy Problem.” In contrast,
when the unknown functions are defined only over a finite interval D ⊆ R,
suitable “boundary conditions” must be imposed at the endpoints of D. From

1
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2 1. Introduction

the physical point of view the latter is clearly the more realistic case. Thus,
for example, D can represent a pipe of finite length, in which one studies the
evolution (in time) of flow variables subject to the system of fluid dynamical
equations. In this case, the boundary conditions consist of influx and outflux
requirements imposed on the pressure, velocity, etc. at the edges of the pipe.

The solutions to the problems considered here possess one common fun-
damental property, that of “finite propagation speed”; that is, the waves travel
at finite speeds. Mathematically speaking, when a change in the initial data is
confined to the neighborhood of some point A, it is “felt” by the solution at
any other point B only after a certain amount of time, an amount that depends
on the distance between the points. It is precisely this feature that allows the
construction of “conservation law schemes” for the (numerical) approximation
of the solutions.

Although this monograph focuses on the resolution of compressible, invis-
cid flow problems, and the construction of suitable conservation law schemes,
an effort is made to place the treatment in the broader (theoretical and nu-
merical) perspective of hyperbolic conservation laws. However, the necessary
background material from physics is also included. We refer the reader to the
classical book by R. Courant and K. O. Friedrichs [30] for a thorough discussion
of the mathematical aspects of compressible flow. This book also discusses in
detail the derivation of the flow equations from the underlying physical conser-
vation laws. For mathematical treatments of hyperbolic conservation laws, we
refer to the books by Courant and Hilbert [31], Evans [36], Hörmander [63],
Lax [75], and Smoller [103].

To simplify the discussion, we consider primarily the associated Cauchy
problem, thus avoiding the further mathematical complications introduced by
boundary conditions. Naturally, when dealing with real flow examples, bound-
ary conditions will be needed, and the ways in which they are introduced into
the numerical scheme will be explained.

The origin of the subject matter of this monograph can be traced back some
forty years, to the early days of computational fluid dynamics. It can best be
described by the opening sentence to Section 12.15 of the book by Richtmyer
and Morton [96]: “In 1959, Godunov described an ingenious method for one-
dimensional problems with shocks.”

Godunov’s method, as much as it was recognized for its novelty and robust-
ness, suffered from some significant drawbacks. It was Bram van Leer, some
twenty years later, who, in an important breakthrough [112], has shown how
to modify Godunov’s original construction and, indeed, has made it possible
to implement the method as the most efficient tool (to date) in this area of
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computational fluid dynamics. In the simpler case of a scalar conservation law,
these ideas will be explained in Chapter 3.

The monograph is divided into two parts, Part I (Basic Theory) and Part II
(Numerical Implementation). Part I (Chapters 2–6) deals with the more basic
aspects (theoretical and numerical) of systems of conservation laws and the
development of the GRP method. Part II (Chapters 7–10) is devoted to several
extensions (physical and geometric) of the GRP method for computational fluid
dynamics. A more detailed discussion of the contents will follow. The reader
will also find a brief summary at the beginning of each chapter.

In writing this monograph we have aimed at a wide readership, consisting
not only of graduate students and researchers in applied mathematics but also
of those working in various areas of physics and engineering. Yet, we have at-
tempted to maintain a solid level of mathematical rigor. Notions such as “weak
solutions” and “convergence of a scheme” are carefully introduced (Chapter 2)
in suitable functional settings. We believe that, given the current mathematical
level of modern numerical analysis, such concepts ought to be familiar to anyone
working in this field. In particular, theorems related to the convergence of
the Godunov scheme (in the scalar case) are proved in all mathematical detail
(Section 2.2 and Appendix B). In this context we introduce (and compare
numerically) some of the “classical” discrete schemes of hyperbolic equations,
such as the Lax–Friedrichs and the Lax–Wendroff schemes. At the same time,
our main objective in Chapters 2 and 3 is the introduction of the “high-resolution
GRP scheme,” by way of the Riemann and generalized Riemann problems. We
refer to LeVeque [81] for introductory material on finite-difference schemes for
conservation laws and to Richtmyer and Morton [96] for the general theory of
finite-difference methods (primarily linear theory). A comprehensive survey of
the convergence properties of finite-difference schemes to scalar conservation
laws can be found in Godlewski and Raviart [54].

In Chapter 4 we introduce systems of conservation laws. The first section
outlines the general mathematical background and can be skipped on first read-
ing, as it is of a more mathematical nature. The physical systems of interest,
those representing the basic conservation laws of compressible, inviscid flow in
the “quasi-one-dimensional” setting, are introduced in the second section. This
section is self-contained; the analysis of centered rarefaction waves, as well
as the Rankine–Hugoniot shock conditions and the solution to the Riemann
problem, is discussed in detail.

Chapter 5 is devoted to the analysis of the GRP in the context of the systems
considered in Section 4.2. In Section 5.1 we study the solution to the linear
GRP, which is the core of the GRP method. Given linear initial distributions
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of the flow variables on the two sides of a jump discontinuity, we determine
their instantaneous time derivatives (at that singularity). Van Leer’s idea to use
this solution for the refinement of Godunov’s scheme is implemented in the
development of the GRP scheme in Section 5.2.

Chapter 6 is devoted to an investigation of the GRP scheme for fluid dynam-
ics. Numerical results are compared to analytical or asymptotic solutions for a
variety of wave interaction problems.

In Chapter 7 we introduce, in rather general terms, the operator-splitting
method of Strang. It enables us to extend the GRP algorithm to two-dimensional
(2-D) settings, while retaining its second-order accuracy. Chapter 8 deals with
further geometric extensions, such as (one-dimensional) “tracking” of singu-
larities and (2-D) moving boundaries.

In Chapter 9 we consider a reacting flow system. The basic set of conservation
laws is augmented by a chemical reaction-rate equation, thus providing a simple
model of combustion. The GRP algorithm is applied to this extended system.

As a concluding (numerical) example for this monograph, we consider in
Chapter 10 a case of wave interaction with a segment of decreasing cross-
sectional area in a two-dimensional duct. The major (GRP) numerical ap-
proaches developed in Chapters 5, 7, and 8, namely the quasi-1-D approxi-
mation and the fully 2-D scheme, are applied to this case. A comparative study
of the two solutions sheds light on the nature of the fluid dynamical interaction,
as well as on the nature of the quasi-1-D approximation.

Finally, a comment about the numbering system in this book. For the reader’s
convenience, all theorems, remarks, definitions, claims, etc. within each chap-
ter are sequentially numbered. Thus, for example, Remark 2.22 comes after
Definition 2.21 and is followed by Example 2.23.


